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Abstract. The Racah-Wigner approach is applied to demonstrate various group-theoretic 
labelling schemes for modes of oscillations and elasticity parameters of the cluster of nodes 
of a cube. It is shown that there exists a fundamental basis in the configuration space, 
closed under the action of the group 0,-the geometric symmetry group of the equilibrium. 
It provides a transparent interpretation of all basic invariants. The fibre bundle and tensor 
product structure of invariant bilinear forms over the configuration space yields three 
classification schemes for elasticity parameters in a way that resembles Racah recoupling 
of several angular momenta. 

1. Introduction 

The systematic Racah-Wigner approach to the problem of energy level structure of 
multi-electron atoms, based on exploitation of spherical symmetry, provides a satisfac- 
tory description of complex atomic spectra (Biederharn and Louck 1981). Some 
attempts have recently been made to extend such an approach to describe the electronic 
structure and small vibrations of multicentre systems (Chan and Newman 1983, Lulek 
et a1 1985a, b, Biel et a1 1987, Lulek and Lulek 1987, Lulek 1989). The spherical 
symmetry is replaced in these attempts by that of geometric distribution of atoms 
(Newman 1983, Lulek er a1 1985a). In the present paper we aim to demonstrate this 
approach on an example of small oscillations of a system of identical material points, 
arranged at the corners of a cube. We refer hereafter to this system as the cluster of 
nodes. 

Within the Racah-Wigner approach one distinguishes two essential parts: the 
single-particle description and correlations. The former part consists of a complete 
classification of some optimal electronic states or normal modes, whereas the latter is 
accounted for by a multiple coupling of appropriate single-particle spaces. In the case 
of a multi-electron atom the first part corresponds to a choice of the single-electron 
central field nlms states of a given configuration, whereas the second corresponds to 
appropriate LSJ-type coupling of orbital and spin angular momenta. Similarly, in the 
case of multicentre systems, the first part consists of a complete classification of 
molecular spin orbitals (for a molecule within the LCAO method), Bloch functions (for 
a crystal within the tight binding), or normal modes of oscillations, and in the second 
part the coupling of angular momenta is replaced by the Clebsch-Gordan procedure, 
in particular by the Mackey theorem (Altmann 1977) for transitive representations, as 
proposed by Chan and Newmann (19841, or Lulek er a1 (1985b). 
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678 T Lulek and M Szopa 

A classification of the single-particle multicentre states by irreps of the geometric 
symmetry group alone is, as a rule, not complete for reason of multiplicities of some 
irreps. A substantial enriching of this classification is provided by factorisation of the 
configuration space into the positional and polarisational factors, responsible respec- 
tively for spatial distribution of equilibrium positions of nodes, and the single-centre 
displacements (Lulek 1980, Newman 1981,1983, Chan and Newman 1982,1983, Lulek 
and Lulek 1984a, b, Ceulemans 1985). Due to the fibre structure of the configuration 
space (Biel et al 1987), the action of the symmetry group is also factorised and the 
factors are decomposed into positional and polarisational irreps, which are eventually 
coupled into resultant irreps. Such a description, bearing an evident analogy to the 
atomic lsjmj case, has been also proposed independently by other authors, in various 
formulations (Flurry 1973, Fieck 1977, 1978, Michel and Mozrzymas 1982, Butler 
1983). In the present paper we proceed to discuss the second step of the Racah-Wigner 
approach on an example of bilinear invariants of the configuration space, i.e. the 
elasticity parameters of the cube. Various coupling schemes emerging from double 
factorisation yield appropriate classifications of these parameters. We discuss also the 
role of these schemes in the determination of energy level structure of vibrations. 

The approach presented here incorporates in a systematic way all geometric selection 
rules, resulting from both distribution of nodes and the polarisation of excitations. It 
can be easily extended to electronic variables, as well as to coupled electron-vibration 
modes since, in the jargon of differential geometry, electronic and mechanical variables 
are characterised by the same base (the cluster of nodes), and differ by their typical 
fibres (the single-centre states, e.g. Is, 2p,, 3d,,., etc, or the displacements x, y, z ) .  The 
choice of mechanical variables in our paper is granted by a nice, clear geometric 
interpretation of appropriate elasticity parameters. These parameters can be substituted 
by, e.g., hybridisation channels in the theory of valence fluctuations (Wohlleben and 
Wittershagen 1985, Drzazga et a1 1987), electron-phonon coupling parameters, Cooper 
pairs in the superconductivity theory (Lulek 1989), or other quantities, according to 
an actual physical need. All such quantities emerge from the construction of covariant 
bilinear (or, more generally, multilinear) forms over appropriate single-particle linear 
spaces. The Racah-Wigner approach offers thus a reasonable chance to achieve a 
systematic insight into mechanisms of many-body correlations, by a full account of 
geometric selection rules. 

2. The structure of configuration space 

Let L be configuration space of a cluster d = { I , .  . . ,8} of nodes of a cube (figure l) ,  
so that dim L = 3 x 8 = 24. This space can be presented as the tensor product 

L = B O W  (1) 

of the positional space 

B = LC { e, I r E I?) 
i.e. the space of all formal linear combinations (LC) of nodes of the cluster d over the 
field C of complex numbers, by the space W of single-centre displacements from the 
equilibrium position, referred hereafter to as the polarisation space (cf Biel et a1 1987 
for details). Let M be the mechanical representation (rep), i.e. the linear rep of the 
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Figure 1. Notation for the cube 

octahedral group Oh of geometric symmetry of the cluster in equilibrium, describing 
the action of this group in the configuration space L. 

Let 
R E  Roh'C?, ( 3 )  

be the transitive rep of Oh on k, i.e. a permutation rep determined by the stability 
group c;Z c Oh of the node A E R of figure 1 (cf appendix 1 for notation of elements 
of o h ) ,  and V be the vector rep in the polarisation space w. Then 

M - R O V  (4) 

i.e. the action M is consistent with the factorisation ( l ) ,  so that the group Oh acts 
separately on each factor B and W (respectively R and V ) .  

Within the Racah-Wigner approach, we have to start with a definition of standard 
bases in the configuration space L, in analogy to known Ijm) bases of angular momentum 
theory. Let 

( 5 )  
be the Cartesian basis, with e: being the unit vector for the displacement of rth node 
in the direction a, and ? = {x, y ,  z }  the set of labels of Cartesian coordinate axes, 
coinciding with fourfold axes of the group o h .  Then an irreducible basis is an arbitrary 
orthonormal basis consistent with the decomposoition 

b,,,(L) = { e :  1 a E ?, r E k} 

M a A l g O  E,@ T i g 0 2 T 2 , 0 A , , 0 E u 0 2 T , , 0  T2, ( 6 )  

b , , , ( ~ )  ={e';"lre 6 h ,  Y E  i=, U E & ( M ,  r)} (7)  

of the mechanical rep M into irreps of o h ,  i.e. a basis. 

where ah is the set of irreps of oh, is a standard basis for r, and &( M, r) = 
(1,.  . . , m ( M ,  r)} is the set of repetition indices for r in M, so that m ( M ,  r) is the 
multiplicity of r in M. Factorisation (1) enriches the classification of an irreducible 
basis in a sense that irreps entering the factors of the product (4) play the role of 
repetition indices, i.e. 

U = (At,  Ad, w )  

A , A E O ~ ,  t E &( R, A) d E &( V, A) (8) 
w E ~ ~ ( A c M ,  r) 
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(Lulek 1980, Newman 1981). In our case we have 

R 2 A,,@ Tz,@Az,@ TI, 

V =  T, ,  
( 9 )  

so that most of the labels in (8) are redundant, and 

v = '1 (10) 

i.e. the positional irrep provides a unique classification (Kuima et a1 1980). It is worth 
pointing out a similarity between the classification (7 ) ,  (8) and that for atomic one- 
electron states, with the positional irrep A, polarisational A and resultant I7 being 
respectively analogues of orbital, spin and resultant angular momentum. This similarity 
suggests that we extend the routine Racah-Wigner methods for multi-electron systems 
in an atom to the case of multilinear forms over the configuration space L and, in 
particular, to invariant classification of elasticity parameters, discussed in section 3. 

The irreducible basis ( 7 ) ,  (8) is not very convenient for construction of multilinear 
invariants. It is better to introduce the third basis, 

bfund( L )  = { E :  1 a E ?, r E k }  (11) 

where E :  is the unit vector for displacements of rth node along the a axis, oriented 
outside the cube. This vector can be also looked at as an oriented edge of the cube. 
Elements E :  coincide with the corresponding e: of the Cartesian basis ( 5 )  with an 
accuracy up to the sign, dependent on a and r. It is easy to observe that the basis 
(11) is a subset in L, closed and transitive under the action M of the group Oh,  so 
that the restriction 

(12) 

is a transitive rep of the group Oh,  defined by the stability group c i h  = {E,  ucD} of the 
edge AB'€ E:  in figure 1. Due to this property, we refer in the following to (11) as 
the fundamental basis. 

- R 0 h  '1, = M '  
M l b d L )  - 

The chain of subgroups (cf appendix 1 and table 1) 

c ; h  c? Oh (13) 

Table 1. Decomposition of the group 0, into left cosets withrespec: to the subgroup 
Ci, = { E ,  ucD}. Each left coset is classified by a pair ( r ,  a ), r E R, a E C', according to the 
factorisation (16). Each row and each column of the table constitutes, respectively, a left 
coset with respect to the subgroup Cf, (the first row) and D& (the first column). First 
elements of the first column form the subgroup D2, , 

1 A  
2 B  
3 c  
4 0  
5 A' 
6 B' 
7 C'  
8 D' 
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with the stability group Cf, of the node A as an intermediate subgroup, defines a 
‘coarsening’ of the orbit (1  1) of the transitive rep (12) into subsets {e: I a E ?}E d, 
called imprimitivity systems (rows of table I ) ,  each consisting of all vectors, correspond- 
ing to a node r of the cluster d. The transitive rep M ’  can be thus factorised as 

M ’ =  R0h c l ,  2: R0h c$L x R 0 h  D;h R x V’ (14) 

V’ = R0h D;h (15) 

is the transitive rep, acting on the set 0 of labels of the Cartesian basis of the single-centre 
space W, i.e. on the set of columns of table 1. 

Apparently, one can interpret the factorisation (14) as a permutation counterpart 
of the factorisation (4) with the orbit (1 1) being the Cartesian product 

where R is given again by (3) ,  and 

bfund( L) = d x ? (16) 
the analogy of the tensor product (1) for the configuration space L. A deeper insight 
shows, however, that such an analogy is superficial. We observe that whereas the 
positional factor R is the same in both factorisations, (4) and (14), the polarisation 
reps V and V’ are inequivalent: V = is a faithful irrep of oh whereas V‘ = AI,@ E,  
is reducible, and moreover not faithful, with the non-trivial kernel 

Ker V’=D*h={E, czXc2,, C2zr 1, U\., U,, U2)aOh (17) 
(4 denoting normal subgroup) consisting of all first elements of the first columns of 
table 1. 

Linear inequivalence of polarisational reps V and V’ has its origin in the structure 
of the configuration space L. The point is that, despite apparently evident formulas 
(1) or (16), the positional and polarisational factors do not enter the configuration 
space on an equal footing. According to the paper of Biel er al (1987), the situation 
can be adequately displayed in terms of fibre bundles. The configuration space L is 
the space C s E  of all sections of the bundle E with the base d and the typical fibre 
W. The positional factor R has thus the ‘absolute’ meaning, emerging from the base 
of the bundle E, whereas the polarisational factor is ‘relative’ in the sense that it 
depends on the choice of basis vectors, which can be performed independently for 
each copy W, of the typical fibre W, corresponding to a node r E d. In particular, the 
presentation of L in the tensor product for (1) is not canonical, i.e. it does not result 
from any essential, structural properties of L, but merely from the choice of sets 
{e: 1 a E G} for each fibre W, as the parallel translation of the standard tetragonal basis 
{eo la E ?} in the typical fibre W. On the other hand, the fundamental basis (11) is 
generated from the set { e :  I a E ?} for the node A by means of geometric operations 
of the point group DZh, given by (17). The fundamental basis (1 1) can be thus obtained 
from the Cartesian basis ( 5 )  as the result of a sign modulation by the point group Dzhr  
or a gauge E :  = * e : ,  with a sign dependent on a and r. 

Within such a picture, the action M of the group Oh in the configuration space L 
can be factorised only in some special cases. The reason is that the action on the base 
d of the bundle E is determined canonically by the transitive rep R, whereas, in 
general one cannot define a total ‘action on the fibre’ due to an irregular dependence 
of basis vectors on the label r of a fibre W,. Such total polarisational reps can be 
reasonably defined only for particular, coherent choices of basis vectors in several 
fibres. In the parallel translation case, i.e. the factorisation ( l ) ,  the polarisational rep 
V entering the mechanical representation M as a factor in (4), is an ordinary geometric 



682 T Lulek and M Szopa 

action of the group Oh in the space W of typical fibre. In the case of fundamental 
basis ( l l ) ,  i.e. the factorisation (16), the action of the group Oh is related to the 
semidirect product structure 

Oh E Dzhocf (18) 

shown in table 1, where passive group DZh coincides with the kernel (17) of the new 
polarisational rep V’, and the active group Cfv coincides with the stability group of 
the node A. Now the old polarisational rep V =  T,, can be looked at as the composition 
of the geometric action V&DZh of the passive group Dzh, consisting in the sign 
modulation of unit vectors ex, e ’ ,  e‘, and the purely permutational action V of the 
active group Ctv, given by the transitive representation 

v -  Rc:V ‘1, (19) 
on the set 0 (cf the description of permutation-inversion structure of the group Oh 
(18) by Florek et a1 (1988)). The permutation rep M’ of the group Oh on the 
fundamental basis (1 l ) ,  with the factorisation (16), can be interpreted, according to 
(14), as the action which is modulated with respect to M in such a way that the sign 
modulation of the Cartesian basis, i.e. the action VJDZh of the passive group of the 
semidirect product (18), is carried from the polarisation factor V to the positional R. 
As the result, the new polarisation rep V’ of the group Oh is weakly equivalent (Michel 
and Mozrzymas 1978, 1981) to purely permutational action V of the group Ctv ,  i.e. 

(20) v ’ ~  R0h D;h VI’= Rc:\ c l ,  R(OhlD2h) ( D ; h / D Z h )  

where = denotes weak equivalence. In other words, V’ is an effective action, resulting 
from the effective action V” by the extension (18) of the effective group Ctv by the 
neutral Kernel DZh. 

We observe therefore that the non-equivalence of polarisational reps V and V’, 
associated respectively with the parallel translation and sign modulation of the single- 
centre Cartesian basis is an effect of relativity, having its source in fibre structure of 
the configuration space. The configuration space L bears here a formal analogy to 
Galilean spacetime, i.e. to space of all sections of the bundle with the base and typical 
fibre being respectively the axis of an ‘absolute’ time and ‘relative’ three-dimensional 
Euclidean space (Ingarden and Jamiolkowski 1985; see also Biel et a f  1987, Lulek 
1989). The choice of the basis in each fibre W, corresponds to a reference frame in 
Galilean spacetime, whereas a rigid adherence to the factorisation (1 )  is essentially 
similar to acceptation of Aristotelian spacetime, where both time and space are absolute, 
as a consequence of the prejudice for ‘frame of absolute rest’. 

3. The harmonic potential 

3.1. The space of elasticity parameters 

The potential energy describing interactions in the cluster 
tion, is given by 

in the harmonic approxima- 

U ( U )  = uo+ 4(u, U )  (21)  

U € L  (22) 
where U,, is the energy of equilibrium, and 4 : L x L + C is a symmetric, 0,-invariant, 
complex-valued bilinear form over the configuration space L. The harmonic potential 
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can therefore be constructed in terms of bilinear combinations of the displacement 
vector 

corresponding to invariants of the group Oh in the symmetric square L ( 2 )  of the 
configuration space L. An elementary character formula yields for our case 

dim L(:?= m(M{'I ,  A , J  = 12 

dim L!,$= m ( M { " ) ,  Alg)  = 2 
(24) 

(25) 

where L"" is the antisymmetric part of L2 = LO L. The small oscillations of the cluster 
I? can be thus described in the most general form by 12 independent elasticity 
parameters. 

The elasticity parameters can be classified in several ways by the choice of a basis 
in the space LIZ) (or in the space followed by elimination of two antisymmetric 
invariants). Each such choice determines a classification scheme. In particular, the 
Racah-Wigner approach to factorisation (1) naturally suggests two classification 
schemes: irreducible and transitive (Lulek 1989). We discuss here also the fundamental 
scheme, emerging from the basis (11). 

3.2. The irreducible scheme 

The irreducible scheme, presented graphically in figure 2, consists of the construction 
of invariants Zou,(r) by the standard invariant pairing of two mutually conjugated r 
and r* modes of the irreducible basis (7). The classification of elasticity parameters 
within this scheme is given in table 2. 

. . R  I /  

Figure 2. The irreducible scheme for the classification of invariant elasticity parameters 
(r, denotes the trivial irrep of the group G). See Lulek (1973) for details of graphical 
conventions. 

Table 2. Classification of invariants I ,  Jr) in the irreducible scheme. 
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This scheme is the most convenient for calculations of secular equations (both 
classical and quantum mechanical), since basic invariants are adapted to the decomposi- 
tion of configuration space L imposed by ( 6 ) .  

The physical meaning of invariants I , ,  (r) is clearly imposed by their role in the 
secular problem. Invariants associated with a given E 6,, determine the spectrum of 
eigenfrequencies within the subspace of all normal modes of type r, independently of 
other subspaces. Thus the irreducible scheme explicitly accounts for all geometric 
selection rules. 

In cases when m( M ,  r)  = 1, there is a single, uniquely determined invariant Z(r), 
which is directly proportional to the square of the eigenfrequency of a normal mode. 
We have six such cases related to r = AI,, Azu,  E,, E,, TI,, T,, . 

When m (  M ,  r) = 2, the dependence of the square of eigenfrequencies on elasticity 
parameters becomes nonlinear due to non-diagonal invariants I , ,  (r), v # v ' .  These 
invariants can be recognised as parameters, responsible for the hybridisation between 
the modes e;" and e:"', of the same type, the hybridisation being the same for each 
y E r. For example ZAlgTZg( Tlu) is the parameter of hybridisation between translational 
AT = AI,Tl, and oscillational T2gTlu modes. 

The irreducible scheme clearly demonstrates the fact that knowledge of the vibration 
spectrum of a cluster (i.e. its eigenfrequencies) is, in general, not sufficient for the 
determination of elasticity parameters, due to the m( M, r) > 1 multiplicities. For 
example in our case there are 10 eigenfrequencies (possibly degenerate), determined 
by 12 elasticity parameters. To find these parameters we need to know not only the 
eigenfrequencies but also certain additional information on the hybridisation effects 
for both two-dimensional secular eigenproblems with r = T2, and T, ,  . 

3.3. The transitive scheme 

In the transitive scheme (figure 3)  we apply the factorisation (4) of the mechanical 
rep M to perform a recoupling according to the formula 

M 0 M -- ( R  @ V )  8 ( R  @ V )  = ( R  @ R ) @  ( V @  V )  (26)  
and make use of the permutation structure of the factor R@ R by means of the Mackey 
theorem described in appendix 2. At the level of permutation reps we obtain 

(27)  
(28) 

R x R E R0h c:, x R0h '\ II 2R0h c:, +2R0h i h  

0~ fl(C:\, Cq,) = { w  = 0,  1 , 2 , 3 }  

Figure 3. The transitive scheme. 
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and 

for w = 0,3 
for w = 1,2. 

Orbits w = 0, 1, 2, and 3 of appropriate resultant transitive reps in (27) correspond 
respectively to diagonal pairs {11,22,. . . ,88}= {AA,  BB,.  . . , D'D'}, pairs of first 
{16,17,. . . ,83} ={AB' ,  AC' ,  . . . , D ' C } ,  second (12, 13,. . . ,87} = {AB, AC, . . . , D'C'}  
and third {15,26,. . . ,84} = {AA',  BB', . . . , D'D}  neighbours. The orbit w encloses 
48/IL,I pairs, i.e. 8, 24, 24, and 8 for w = 0, 1, 2, and 3, respectively. 

Invariants within the transitive scheme are obtained by pairing of an irrep 4 E 6 h  

enclosed in the resultant transitive rep RGZL-  of the Mackey decomposition (27) (i.e. 
arising from the base I? x 2) with the complex conjugate counterpart 4* from the 
fibre space W O  W in accordance with figure 3. They are denoted as Z(w, 4, f, Ad, 
A'd',  d " ) ,  w ~ f l ,  4, A, A ' E d h , f E  6(RohZL- ,  4), d, d f E  6 ( V ,  A),  d " E  h ? ( A @ A f ,  4*). 

In our case A = A ' =  T,,, so that the indices Ad, A'd',  d" are redundant. Moreover, 
the decompositions of ROh:':. = R and R 0 h : ' ; h =  MI= M are given respectively by (9) 
and (6). As shown in detail by Lulek (1989), antisymmetric invariants enter only 
through the multiplicty indices f~ [Roh:Ly, 4)  (note that all double cosets in (28) are 
self-inverse, and A = TI, is a tensor irrep). Since m( RohZL-, 4)  c 2, the index f is also 
redundant under the restriction to symmetric bilinear invariants. The basic invariants 
for the transitive scheme can thus be denoted by Z(w, 4), where w is the orbit of 
geometrically equivalent pairs of nodes of the cluster 2 and 4 is the irrep entering 
the resultant positional transitive rep R 0 h I L - ,  associated with the Cartesian square 2 x R 
of the base of the bundle E, and-having its counterpart 4* in the fibre space. The 
transitive scheme for the cluster R is given in table 3. 

Table 3. Classification of invariants I ( w ,  C$) in the transitive scheme. The additional 
multiplicity label f c  ti?(Roh 'U, d), for w = 1, 2 and C$ = T z g ,  distinguishes symmetric 
(f= {2}) and antisymmetric (f= { lz}) bilinear forms. 

A nice feature of the transitive scheme is the simplicity, having its origin in the 
classification label w of geometrically equivalent pairs of nodes. Invaraints within 
each orbit w are further labelled by the irrep 4, responsible for a mutual compensation 
of effects of spatial distribution of nodes (4  enters the positional rep R 0 h I L - )  and 
polarisation effects (4 *  originates from the product A @ A '  (cf figure 3)). In  particular, 
for 4 = A , ,  we obtain permutational invariants, i.e. quantities which are invariant 
under the action of the group Oh separately on the square 2 x l? of the base and on 
W O W  of the fibre of the bundle E. They can also be interpreted as 'isotropic' 
interactions between appropriate nodes, whereas those associated with 4 # A , ,  can be 
interpreted as various types of anisotropic couplings. We observe from table 3 that 
each orbit w is associated with exactly one isotropic interaction, whereas the number 
of types of anisotropic couplings depends upon the orbit W .  There is just one 
type 4 = TZg of anisotropic coupling for w = 0 and w = 3 ('self-interaction' and third 
neighbours, respectively), whereas orbits w = 1 and 2 (first and second neighbours, 
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respectively) are associated with three different types of anisotropic couplings, classified 
by C$ = E , ,  T,g and Tlg. 

On the other hand the transitive scheme involves a suppression of the irreducible 
structure of the configuration space imposed by the decomposition (6) of a mechanical 
rep since a single basic invarant of this scheme exerts an influence on the structure of 
the spectrum of eigenfrequencies for various irreps r. 

3.4. The fundamental scheme 

It is worth observing that both irreducible and transitive schemes can be derived simply 
on the grounds of a non-canonical factorisation (1) of the configuration space, without 
resorting to its fibre structure. In this subsection we proceed to use explicitly this 
structure by exploiting the existence of the fundamental basis (1 l ) ,  with the closure 
property (12). The main advantage of the transitive scheme may be formally attributed 
to the application of the Mackey theorem (appendix 2) to two positional factors R x R 
of the direct square M 0 M of the mechanical rep. Using the fundamental basis, we 
are able to extend the powerful Mackey theorem for the whole square M O M ,  or, 
more exactly, for its permutational counterpart M ' x  M ' ,  with M '  given by (12). The 
Mackey decomposition 

(cf figure 4(a)) yields a unique classification of 14 invariants in L t V  by a single label 
7 E H(C:h, Cih), where H(Cih, Cih) is the set of double cosets of o h  with respect to 

of 10 self-inverse double cosets and two pairs of mutually inversible ones, which yields 
12 symmetric and 2 antisymmetric invariants (cf Lulek 1989). 

The unique classification on invariants I , ,  7 E H(C{h, Clh,) in the fundamental 
scheme is based entirely on the action of the transitive rep R0h:'lh on the basis bfund( L )  
of the configuration space L. We do not even need to introduce any linear structure-it 
is sufficient simply to count on one's fingers, i.e. to perform some combinatorial 
considerations on the Cartesian square of the finite set (1 1). Each basic invariant I, 
is now just an ordinary sum of products E:&: ,  , corresponding to tetrads ( r ,  r',  a, a ' )  
running over all elements of the orbit 7 E H(Clh, Clh)  of the resultant transitive rep 

Until now we have not used the factorisation (14) of M ' .  We proceed to use this 
factorisation in a way formally similar to the case of transitive scheme, (26), namely 

(31) 

where the new polarisation factor V' accounts for the difference between fundamental 
(11) and Cartesian ( 5 )  bases, emerging from the fibre structure of the configuration 
space as described in section 2. It is worth observing that the classification of funda- 
mental invariants by the group action is already complete, so the factorisation (14) 
cannot yield any enriching of this classification. I t  can merely provide a more explicit 
meaning of the classification label 7 by a separation of positional and polarisational 
effects. 

We apply the Mackey theorem in two stages: first to each factor on the R H S  of (31)  
separately, and then to coupling the intermediate transitive reps to resultant ones 
(figure 4(b) ) .  

the pair (c!h, c i h )  O f  subgroups ( C f  (A2.1) and (A2.2)). The Set H(C:h, Cih) Consists 

R0hrLq, 

M ' x  M ' =  ( R  x V ' )  x ( R ' x  V ' )  = ( R  x R )  x ( V ' X  V ' )  
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Figure 4. The fundamental scheme. V '  = R 0 h  D:h and M '  = R0h C l h  are transitive retracts 
of polarisational and mechanical reps, respectively. ( a )  Immediate application of the 
Mackey theorem; ( b )  an application in two stages. 

The first stage yields (27) for the positional factor and 

V' x V'  ROH D;h + R 0 h  D Z h  (32) 

for the polarisational one. The corresponding set of double cosets for the positional 
and polarisational factors is given respectively by Q of (28) and by 

Z =  Z(D&, D&) = (5 = 1,2}. (33) 

The latter set is associated with the decomposition 

? x ? = { x x , y y , z z } u { x y , x z , y x , y z , z x , z y }  (34) 

of the square of the orbit ? of R 0 h  DL into diagonal (5 = 1) and off-diagonal (5 = 2)  
orbits. 

The second stage yields 

R0h L* (35) R0h Lw x R0h Ld = 
*€VI( L,. L ,  ) 

which allows us to replace the single classification label 77 by the sequence 

77 = ( U ,  5, +) U € R  t € Z  + E  W&, L) (36) 



688 T Lulek and M Szopa 

of labels of double cosets originating from appropriate Mackey decompositions. The 
full classification is achieved by using the following Mackey decompositions: 

(37) 

R0h ‘Ih x R0h D;h R0h ‘ l h +  R0h ‘l (38) 

(39) 

R 0 h  ‘:v X R 0 h  D2h == R0h ‘1 

R 0 h  ‘1, x R 0 h  D2h == 3R0h ‘3 

and (14), a particular case of the Mackey theorem (A2.1). The classification of 
invariants I , ,  7 = (w, 6, 4 )  with in the fundamental scheme is given in table 4. 

Table 4. Classification of invariants I , ,  t) = ( U ,  6, +J, in the fundamental scheme (g, is a 
representative of the double coset t) E H(C ih ,  Cih)). 

U 5 * L, Le L* g, 7) 

1 1 1 c i h  D;h c ; h  0, 10 
2 C \ h  D;h C l  c4 \ 11 

2 1 C l h  D2h c, c4 ! 12 
2 c;h D 2 h  Cl c,,1 13 
3 Clh D2h C l  ’ 6  B 14 

The factorisation (14) provides thus an insight into the internal structure of the 
fundamental classification scheme. First of all, it encloses the label o of pairs of 
geometrically equivalent nodes, the main advantage of the transitive scheme. Next, 
the label 6 distinguishes the class of diagonal ( a ,  a ) ,  ((= 1 )  and off-diagonal (a, a’), 
a # a’ (6  = 2) pairs of polarisation labels a, (Y’E 

In the cases w = 0 (self-interaction) and w = 3 (interaction of third neighbours) the 
sequence (U,  (), ( E E, already fully characterises the basic invaraiants Z, = Zws. 

The situation is slightly more complex in cases where w = 1 and w = 2 (respectively 
first and second neighbours), since the Mackey decompositions (38) and (39) imply 
here a non-trivial interplay of positional and polarisational effects, involved in the 
third classification label 4 E q ( L s ,  L w ) .  This label can easily be interpreted geometri- 
cally. For example let us consider the orbit w = 1 .  Each pair ( r , ,  r 2 )  of nearest 
neighbours defines canonically a direction which is parallel to the one basic polarisation 
and perpendicular to the two others. For example, the pair (A,  B’)  = (1,6) is parallel 
to a = x, and perpendicular toy  and z. This distinction yields two orbits + E ‘U(D,X,, Cih) 
for the diagonal case ( = 1, and three orbits +b E 9 ( D 2 h ,  Ci,,) for the off-diagonal case 
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5 = 2. All these five cases are demonstrated in figure 5 ,  where continuous arrows denote 
the harmonic reaction of the cluster d, under the coupling Z I P + ,  to a displacement of 
the first node along the x axis (the broken arrow), assuming that elasticity parameters 
for all other invariants vanish. Similar considerations apply to the second neighbours 
( w  = 2), since each pair of such neighbours defines canonically a plane perpendicular 
to one axis, and parallel to the two others. Results are given in figure 6. Figures 5 
and 6 provide a simple, transparent geometric interpretation of basic invariants in the 
fundamental scheme. 

An additional advantage of this scheme is the simple form of the secular matrix 
in the fundamental basis (1 1). Each element of this matrix contains exactly one basic 
invariant, with the coefficient 1 (cf table 5). Formally it is a consequence of the fact 
that the set of elements of the potential matrix can be identified with the carrier set 
of the permutation rep M'x M '  of the group Oh, and the invariants are associated 
with its orbits. It justifies the term 'fundamental scheme', since this scheme provides 
speaking somehow imprecisely, the optimal 'rectangular reference system' for the 
description of the bilinear harmonic invariants in the cluster d. 

3.5. The form of invariants 

The explicit form of invariants can be written down most easily in the fundamental 
scheme, since it is given immediately from table 5 ,  e.g. 

( U  I (61 J 

1 . 

Figure 5. Geometric interpretation of basic invariants in the fundamental scheme for 
nearest neighbours ( U =  1). ( a )  I , , , ,  ( b )  I , , , ,  ( c )  I , , , ,  ( d )  I , , , ,  ( e )  I , , , .  
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t 

I C /  
4 

l e )  

Figure 6. Basic invariants for the next-nearest neighbours ( U  = 2 ) .  ( a )  I ? , , ,  ( b )  I,,,, ( c )  
( d )  1 2 2 z ,  ( e )  I,?,. 

Table 5. The matrix of the harmonic potential in the fundamental  basis. Numbers in the 
table stand for elasticity parameters of fundamental  basic invariants, labelled by I) according 
to the last column in table 4.  The table contains the first quarter of the matrix, corresponding 
to r = I ,  2,  3, 4 (enumeration of nodes according to  figure I ) .  It is equal to the second 
diagonal quarter,  whereas the two off-diagonal quarters are  obtained from it  by adding 
the number 7 to each quantity in the diagonal quarter.  

Y 1 2 2  3 6 6  4 5 1  4 1 5  
1 j' 2 1 2  5 4 1  6 3 6  1 4 5  

2 2 1  5 1 4  1 5 4  6 6 3  

Y 3 6 6  1 2 2  4 7 5  4 5 1  
7 4 5  6 3 6  

5 1 4  2 2 1  6 6 3  7 5 4  

Y 4 5 1  4 1 5  1 2 2  3 6 6  
3 y  6 3 6  1 4 5  2 1 2  5 4 7  

7 5 4  6 6 3  2 2 1  5 7 4  

Y 4 1 5  4 5 1  3 6 6  1 2 2  
4 y  7 4 5  6 3 6  5 4 7  1 1 2  

6 6 3  1 5 4  5 1 4  2 2 1  

2 . v  5 4 1  2 1 2  
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The transformation between basic invariants in the fundamental and transitive 
schemes is diagonal with respect to the label w of the class of neighbours. For the 
zeroth and third neighbours the corresponding basic invariants coincide, i.e. 

L 2  = i (w,  E,)  w = 0 or 3. 

Thus, in particular, Z,, describes the isotropic coupling. In the case of nearest and 
next-nearest neighbours ( w  = 1 or 2) we have for the diagonal polarisations (6  = 1) 

(43) 
L l l =  ( I ( w ,  AI,) - I ( @ ,  E g ) ) / 3  

L 1 2  = (2I(w, Alg)+ I ( %  Eg) ) /3  w = l o r 2 .  

Thus the isotropic coupling I ( w ,  Alg) is not a basic, but a composite, invariant in the 
fundamental scheme, i.e. 

I ( w ,  AI,) = I U l I +  L 1 2 .  

I w 2 1  = [ I ( w ,  T1g) - I ( w ,  T 2 g ,  {12))1/2 

I d 2  = [ I ( w ,  TIg)+ I ( %  T 2 g ,  {1*1)1/2 

(44) 
For the off-diagonal polarisation ( 6  = 2) we have 

(45) 
1,023 = T 2 g ,  {2)) w = l o r 2 .  

The first two invariants in (45) correspond to mutally inverse double cosets (g, = C,, 
and C&! for w = 1, and similarly g, = S+ and Si; for w = 2-cf table 4), and thus 
involve antisymmetric parts. 

The transformation between fundamental and irreducible scheme is given in table 
6. Invariants in the irreducible scheme, involve the linear structure of the configuration 
space, and look thus more complicated than those in the fundamental scheme. 

Let us take as an example 

Table 6. The matrix of the transformation between bilinear invariants in fundamental and 
irreducible schemes. The table contains the first quarter of the matrix. The whole matrix 
is of the form (2  -",, where A stands for the first quarter. Rows and columns of the whole 
matrix are labelled according to tables 2 and 4, respectively. (Each row of the matrix is 
to be multiplied by a constant c.) 

0 2 
~ ~~~~ 

7 1 - 1 2 

- - 1  2 1 2 3  

1 1 1 1 1 1 1 
2 - 1  2 2 - 1  - 1  - 1  

1 - 1  2 - 1  -2 0 1 
1 0 1 -1  0 0 0  
0 1 0 0 -1 1 -1 
0 1 0 0  1 -1 - I  
2 1 -2 0 - 1  - 1  1 
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This invariant, which plays the role of the hydridisation term in the secular equation, 
is the sum of the symmetric (first two terms in brackets) and  antisymmetric (the two 
remaining terms) parts. 

4. Final remarks and conclusions 

We have applied the Racah-Wigner approach to the determination of the harmonic 
potential of a cube in the most general form admissible by the symmetry of the 
octahedral group Oh.  The corresponding twelve independent elasticity parameters are 
classified in the irreducible, transitive, and  fundamental schemes. This classification 
is the most transparent in the fundamental scheme (tables 4 and 5 and  figures 4-6), 
since the coupling between any two elements of the fundamental basis bfund( L )  in the 
configuration space L of the cube is given by a single parameter, which is the same 
within each orbit of the action of the group Oh on the Cartesian square bfund( L )  X bfund(  L )  
of all elements of the potential matrix. Each such an  orbit exhibits a simple geometric 
meaning as an  interplay of positional and polarisational effects. 

Extension of the Racah-Wigner approach to multicentre systems is associated with 
a factorisation of the configuration space into positional and  polarisational factors 
which allows us to perform appropriate recouplings. It is, however, worth noting that 
such a factorisation is not canonical, even if it is consistent with the action of the 
symmetry group. We have shown here an  example of the cube that adequate account 
of degree an arbitrariness of choice of a basis in the configuration space, along a 
covariant Racah- Wigner approach involving all geometric selection rules, is provided 
by the fibre structure of the configuration space. This structure, which at first sight 
introduces only a useless obfuscation of an  apparently clear situation described by the 
factorisation (1) of the configuration space, allows us in fact to recognise that the 
positional factor in ( l ) ,  (4), (14) or (16) has ‘absolute’ meaning, i.e. i t  is associated 
with the base I? of the bundle E, whereas the polarisation factor is ‘relative’, depending 
upon the choice of ‘reference frame’-the set of basis vectors in each fibre W,, r E d. 
Actually, polarisation reps V and V’, which enter respectively the transitive and  
fundamental schemes of classification of elasticity parameters, are mutally inequivalent, 
as a result of relativity on fibres. 

It is worth mentioning that the factorisation (1) is associated with the Cartesian 
basis ( 5 ) ,  resulting from the parallel translatiori of a standard basis to each node. This 
basis is convenient in cases when the cube is a part of a crystal with translational 
symmetry. On the other hand, the factorisation (16) of the fundamental basis (11) is 
the best adapted to the octahedral symmetry itself. Both bases differ mutually by a 
sign modulation which imposes the linear inequivalence of polarisation reps V and  V’. 

Classification schemes presented here allow us to discuss the relationship between 
elasticity parameters and  the spectrum of vibrations. In particular, the irreducible 
scheme reveals explicitly the connection between the hybridisation of modes r with 
non-trivial multiplicities m( M ,  r) = 2 ,  and a nonlinear dependence of the  corresponding 
eigenfrequencies upon the elasticity parameters. 

The irreducible scheme of classification is best adapted to the secular eigenproblem, 
whereas transitive and fundamental ones allow us to single out the elementary ‘funda- 
mental’ couplings, due to the powerful Mackey theorem. 

The approach presented here can be extended to other clusters and  other fibres, 
e.g. to study electron correlations or electron-phonon coupling in crystals. It is, 
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however, important to note that the main advantage of the present case, i.e. the 
fundamental basis (11) with the closure property (12), does not exist in general. We 
hope to extend this concept to cover a larger class of physically significant cases. In 
any case, a systematic Racah-Wigner-type approach to multicentre systems provides 
an insight into the nature of many-body interactions. 

Appendix 1. Notation of elements of the octahedral group 

We assume that the axes x, y, z of the Cartesian coordinate system coincide with the 
fourfold axes of the group o h ,  and the nodes of the cube are labelled according to 
figure 1. Then the elements of the group oaoh (of rotations of a cube) are denoted 
as follows: the fourfold axes C4,, C;,!, etc., threefold C3A, CTA, etc, twofold CZI, Czy, 
C2z, and uAB, uAC, uBD etc, so that the sense of a rotation is associated with the 
right-hand rule with the positive direction of a Cartesian coordinate axis for the case 
of fourfold rotations, with the direction A'A, B'B, etc for the threefold axes, and with 
the twofold axis uAB passing through the centres of the edges AB' and A'B. The mirror 
rotations are determined by the space inversion, so that e.g. a, = ICz,, uAB = ZuAB are 
reflection planes, and again Si ;  = SlX = ZC;; are the appropriate mirror rotations. 

Let d ( G : H )  denote an orbit of a transitive rep of a group G ,  determined by the 
stability subgroup H c G (with an accuracy up to an inner authomorphism of G-cf 
Lulek er a1 (1985a) for details). Using this notation, we are able to present concisely 
some geometric and combinational aspects of our constructions on the cluster k. In 
particular, 

d = d ( O h : C f v ) = { A , B ,  C,D,A' ,  B', C' ,D ' }  (Al . l )  

where 

C ~ V = { ~ ,  c 3 A ,  c:;, U B C ,  (+ED, aCD}cOh (A1.2) 

is the stability group of the node A €  k, and 

I ? ( o h :  D&) = { X ,  y ,  Z }  (A1.3) 

where D;h is the dihedral group with the fourfold x axis. Orbits ( A l . l )  and (A1.3) 
serve as labels of bases of the positional space B and the polarisation space W, 
respectively. 

Decomposition of the manifold of the group o h  into left cosets with respect to the 
subgroup 

c ; h  = O C D )  (A1.4) 

is given in table 1. This decomposition clearly exhibits the factorisation (16): rows 
and columns of this table constitute, respectively, left cosets of transitive factors R0h:':v 

and R o h z D ; h  of the right-hand side of (16). 

Appendix 2. The Mackey theorem 

We formulate here the Mackey theorem (Altmann 1977) in a form adapted to an 
arbitrary pair of transitive reps, R C Z H  and RGrD, of the group G, with stability groups 
H and D, respectively (Lulek et al 1985b). The direct product RG:H x RG:" of these 
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reps acting on the Cartesian product d ( G  : H) x d ( G :  D) of the corresponding orbits, 
in general is not transitive, but it decomposes into transitive reps according to the 
formula 

T Lulek and M Szopa 

(A2.1) 

where n (D ,  H) is the set of labels of double cosets of the group G with respect to the 
oriented pair (D, H) of its subgroups, related to the decomposition 

G =  U Dg,H (A2.2) 
w e R I D .  H) 

where g, is the double coset representative, and 

L, = D n gw Hg;’ w E Q(D, H) (A2.3) 

is the stability group of the resultant transitive rep RG:Ly. Clearly, A2.1 provides the 
transitive analogue for the Clebsch-Gordan decomposition of irreps. The orbit of the 
resultant transitive rep RGZL- consists of all such pairs ( r , ,  r 2 ) ,  rl E E(G: H), r2 E 

R(G:D) which are equivalent under the action of the group G (e.g. geometrically 
equivalent pairs of nearest, next-nearest etc, neighbours). 
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